If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40y-5y^2=0
a = -5; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-5)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-5}=\frac{-80}{-10} =+8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-5}=\frac{0}{-10} =0 $
| 3−2(y−3)=4y−5 | | |4y-7|=|4y+6| | | Y+10=3x | | 2x+629=8 | | -2x2+2x+60=0 | | -4-u=-6 | | 4/y=13/9 | | D=10-(3x-5) | | 5x+4=10x+6 | | -9x+4=1+2x | | 5+2x=2-x | | (2*3.14*r*r)+(2*3.14*r*10)=440 | | 2(4x-1)-4(-x-7)=5 | | 2(4x-1)-4(x-7)=5 | | 2(4x-2)-4(x+7)=5 | | 2(4x-2)-4(x-28)=5 | | 3x^2+.167x-3.167=0 | | 5(4c-1)=3c(2c-2) | | 5-1=3x+9 | | X^2+7x-29=-41 | | 0,0025x^2+0,000018x-0,000018=0 | | 6x=+4=11 | | x/2+8/4=8 | | x+2(x-2)=(x-2)=22 | | 3x+8=-5x-44 | | 2b(b-1)=3(b-2) | | x^2+49x-70=0 | | (x)+(2x)/(3)=(18) | | (x)+(2x)/3=18 | | t-38=-15 | | 5-1/x=1 | | (x+1)(3x-1`)=40 |